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Project Summary for Coarse Grain Reconfigurable
Array Technology

Jan Frigo, Paul Graham
Los Alamos National Laboratory

Abstract—This project involves running some benchmark architecture so as to provide a simplified programming model,
code on specialized hardware processors to determine theimprove the processor-to-hardware communication bottleneck,
power/operations efficiency of the hardware. Two types of Coarse shorten the overall application development time, and lower
Grain Reconfigurable Array (CGRA) technology will be covered,; - .

a processor-oriented, specialized RISC processor, the Stretchthe power budget fo'r high pgrformqnce computatlons. )
S5000; and a medium-grain specialized hardware-oriented tech- FPGAs are considered fine-grain reconfigurable devices
nology designed for the embedded, DSP markets, the MathStar because they are programmed (and reprogrammed) at the gate
FPOA chip. These technologies use a C-based language. Weevel with arbitrary bit precision and functions. Besides FPGAs
would select one of these technologies based on the student's,q e fine-grain reconfigurable platform, the general reconfig-
interests and background. The benchmark algorithms we have - . -
collected from the signal and image processing domain include: urable Computlng pIatfqrms takes two forms: processor-centric
an FIR filter, fits, a matched filter, digital down converter, an cluster, or medium-grain hardware processing element array.
adaptive beam former and some image processing algorithms.  Processor-oriented clusters such as MIT's RAW, or Am-
The project would involve profiling one or more of these codes to pric’s AM2000 family of reconfigurable processing arrays
determine the power/ops for the application. Also, if time allows (RPAs), use some kind of RISC core and may or may not

algorithm optimizations may be implemented to improve run- - e : .
time performance. The time and effort to develop the application have application-specific, reconfigurable logic blocks. As the

and the experiences using the development environment would humber of processors increase, the programmer-friendliness
also be reported. decreases as it approaches a highly parallel processor system.
In addition, because of the potential irregular size and inter-

Keywords:reconfigurable computing, FPGA, Coarse-grain reconfigonnection complexity, customizing a device or building ad-

urable array, CGRA, SIMD, MIMD, SoC ditional devices may be considered to be a complete redesign.
Ultimately large scale processor-oriented cluster systems could
|. PROJECTOUTLINE be time consuming to program, test and design, thus, devel-

The goal of the coarse-grained reconfigurable array effortapment cost may be expensive.
to evaluate new medium-grained processing technologies an#lost medium-grain reconfigurable platforms (e.g., Math-
recommend them for use in the proliferation detection domaiBtar's FPOA, Velogix’s VX200 chip) approach implementation
CGRA technology has a basic computational unit or arithmetiith an ASIC design flow. For these systems, the customiza-
logic unit (ALU) that is a higher level of abstraction than amion process may be just as cumbersome as their processor-
Field Programable Gate Array (FPGA). CGRA technology isriented equivalent, due to place and routing issues when
optimized for a particular application domain to maximize thmapping to hardware and the complexities of scaling to a
advantages of their specialized processing units. Through thew device. As a result, their operating frequency is generally
use of massively parallel and specialized processing units, tbgs than 200 MHz which may be adequate, depending on the
CGRA technologies hope to gain high performance and an ispplication domain.
proved power per operation metric compared to conventionalThis project covers processor-oriented technology and a
programmable logic. Currently, embedded systems, convenedium-grain specialized hardware-oriented technology de-
tional reconfigurable computing (RCC) systems, and senseigned for the embedded, DSP markets. These technologies are
oriented systems utilize processor-based or hybrid process0+based as are the benchmark algorithms we have collected.
FPGA hardware systems to address a variety of data analySise project would involve profiling these codes to determine
data mining, and real-time processing applications. Thegewer/ops andhot spotsor what functions or loops cause the
systems introduce a set of known limitations such as: tlagorithms to run slowly. If possible, optimizations to the code
communication between the processor and the configurabtuld be implemented to improve the run-time performance.
hardware results in programming difficulties and communihe time and effort to develop an application would also be
cation overhead that can greatly reduce overall performaneeported.
placement and routing to hardware of a very large, complex al-
gorithm may introduce considerable latency; the development
environment tool chain is expensive, time consuming, andThe benchmark algorithms selected for evaluation of the
not user-friendly. CGRAs aim to combine computation unit€GRA technologies are based on programmatic proliferation
(processor(s), hardware ALUs or combinations of both) in omketection efforts, i.e., algorithms that are in use or have been

Il. BENCHMARK KERNELS



used on recent projects in Los Alamos National Laboratory&=Ts are of great importance to a wide variety of applications

(LANL) International Space and Response (ISR) Division. Th&uch as:

signal processing kernels include: a poly-phase filter (ppf),, 64 pt FFT, radix = 2 or 4 - match band for ionosphere

a 4k FFT (16-bit), and an adaptive beamformer algorithm. , 512 pt FFT, radix = 2 or 4 - typical satellite time link

The FIR filters and FFTs are commonly used DSP operations, 1K or 4K FFT, radix = 2 or 4 - commonly used bench-

that have optimized FPGA implementations for comparison.  marks in the literature

The adaptive beamformer algorithm has components such

as a covariance matrix inversion (LU decomposition) whic. Adaptive Beamformer

are difficult to implement on FPGAs since the computation zyantive heamforming has important applications to dis-

has d'V'S'On operatlon_s and_must be convertec_j to_ fixed Pof%uted sensor networks, in particular to energy constrained

a”Fhmet'C from a floating point model - computing in floating,y ¢ networks. Beamforming can be applied to the sensor

point is very costly on an FPGA. _ networks, for example, to estimate the direction of arrival
The'|magg processing kernels selected include: kmead}sa low power signal in a noisy environment; also it can

clustering, pixel purity index (PPI), and a matched filtep oohjied to network communications for data exfiltration

algorithm. These were chosen because they contain Operat'ﬁé‘iﬁg collaborative coherent transmissions as a phased array

such as the dot product and convolution that need a large saving power. These well-known techniques are compu-

amount of local memory accesses and parallel COmpmat'oﬂﬁionalIy intensive and real-time. There is a multiplicity of

We_ Wanted_to_ choose a mix of algorithms - those that aé‘?gorithms for beamforming generally using matrix inversions,
typically opt|m|zgd for FPGAs and DSP processors and SOTBETs or other weighted sum type operations. In general these
tha_t are c_hallengmg to compute on conventional programmighorithms lend themselves to fixed precision highly parallel
logic devices. . . __computations ideally performed by FPGAs but one common
, The source code for these benchmgrk qlgorlthms IS Wr'tt'BBeration, inversion of a covariance matrix, generally works
in C/C++, RTL VHDL and/or Matlab/Simulink. best if implemented in floating point. Prior work by [3] spon-
A. Poly-phase Filter Bank sored by NA-22 has explored the feasibility of an all-FPGA
gnplementation of an adaptive beamformer using a Bayesian
nethod. In this application domain, CGRA technology with
ating point capability may have an advantage compared to

In the field of signal detection, multi-rate filter banks hawv
been employed to help detect RF signals in noisy en
ronments. By decomposing a signal into various frequen

subbands, filter banks enhance many algorithms because \XG/AS ) ) . ) .
make it easier to identify pertinent material on a band b e investigate an inverse covariance matrix computation, a

band basis. The polyphase implementatian a multi-rate oating point LU decomposition shown below in Equations 1

filter structure combined with a Fast Fourier Transform (FF'I%nd ) 2, that s d|ﬁ|pult tp |mp!ement on an FPGA since it
designed to extract subbands from an input signal[1]. Thedires floating point arithmetic for best results.

polyphase filter portion of the structure is based on a prototype Bii = ai; — X7 i B (1)
baseband low-pass Finite Impulse Response (FIR) filter with 7 “ =1

symmetric coefficients, i.e., the firs¥2 and the lastn/2

coefficients are the same, albeit in reverse order. The remaining aij = 1/Bjj(ay; — Si_  cinBrj) 2
filters of the filter bank are frequency shifted versions of the

prototype. The symmetry of this prototype filter combine®. K-means Clustering Algorithm

with the structured frequency shifts allows for an optimal K-means clustering is an unsupervised clustering algorithm
implementation of the filter bank. First, a prototype low-pasgat is a popular data mining technique. The basic principle of
FIR filter, hO[n], with the desired filter parameters is designedhe image clustering process is to take an original image and to
The polyphase filterspk[n], are expressed in terms of theepresent the same image using only a small number of pixel

prototype filter, values[6]. The K-means clustering algorithm performs this
pk[n] = hO[k +IM] k =0.M-1,1=0..L —1 task by attempting to minimize a cost function (the absolute
nis the length of the FIR prototypeVl is the number of yajye of a difference) over a set of cluster centers. First, the
polyphase filters, L is the length of the individual polyphasgigorithm assigns pixels randomly to the classes, computes
filters, (L =n/M = 4). The FFT is used following the polyphasgne centers of the classes. There is a outer loop for a number

filtering structure to provide the frequency shifts for thef jterations, N, which can be either fixed in advance or
various channels. undetermined, and an inner loop that scans all the pixels. For

B. 4k FFT each pixel_ We_check if it still belongs to its assigned class. If
not, the pixel is moved to another class and the two centers,

A fast Fourier transform (FFT) is an efficient algorithm tocorresponding to both the new and the old classes, are updated.

compute the discrete Fourier transform (DFT) and its inversghe number of pixels in a class is stored as well as the sum

LThe filter structure was developed in collaboration with Prof. John Vile2cCUmulation necessary for recomputing the class centers. The
senor's team at UCLA. class centers are periodically updated every block of B pixels.



The computation can roughly be split into three parts: the Most of the execution time of the PPI algorithm is spent
distance calculation between a pixel and a class center, thecomputing dot-products between the pixels and the skew-
accumulator update and the center update. The most tiers. These dot-product are highly independent and could be
consuming part of the algorithm is the distance computati@one simultaneously. There are many ways to parallelize the
between the pixels and the class centers, even if the clasgorithm, one such approach [5] targets the limited resources
center is frequently updated. The accumulator and the classilable on FPGA boards. A sequential version of the Pixel
center updates represent only a small percentage of the tétatity Index algorithm follows:
computation time, especiallyforapartitiqn into a large ngmber PIXELSIN][D]: // an image of N hyperpixels
of classes. For example, for a class partition of 32, the distanceskeweR[K][D]; // a set of K random skewers
computation represents more than 99.6 % of the computatiorPPI[N]; /I the PPI result

time.
P : ; ; . /I reset pixel purity index
This iterative algorithm has the following steps: for (10 n < N: n++) PPI[]=0;

1) Randomly assigns each data elemeffif £0 one of k for (k=0; k < K; k++) /I K skewers

classes _
2) Compute the centers of the classes dpmaX_=|\_/”N_|NT;_ dpmin=MAX_INT;
3) Loop over the data set A f‘f{r (n=0; n < N; n++) // N pixels
a) Let C = class of Al] /I compute a Dot-Product
b) Determine the class number K which has the dp = O;
minimum distance to pixel i for (d=0; d < D; d++) . .
c) Store class number K to NewClassIndex]i] dp = dp + SKEWERS[KI[*PIXELS[n][d];
/I detect extrema
4) Loop over the data set A if (dp > dpmax) { imax=n; dpmax=dp; }
a) if (C = class of Ai]) is not equal to class (K = if (dp < dpmin) { imin=n; dpmin=dp; }
NewClassIndej]) then move pixel i from class C }
to class K and re-compute the centers of classes K update PPI
and C PPI[imax]++;
FPGA implementations [4] focus only on parallelizing the PPI[imin]++;

most time consuming part, that is the distance computation
between the pixels and the class centers. A pixel stream flofsr each skewerN dot-products are computed to determine
through a linear array of processors. The number of processthrs two pixels which produce the largest and the smallest dot-
is equal to the number of classes. A procedseomputes a product. The pixel indexHP! vector) is modified accordingly.
distance between the claksand the current flowing pixel. A pixel n is a candidate to be a pure pixelPPI[n] has a
The result is taken at the rightmost end of the array by tiégh value.
filter process and corresponds to the index class for which aFrom the above description it can easily be seen that all the
minimum distance has been found. dot-products can be computed independently: there are no de-
i ) pendencies between them. The parallelization takes advantage
E. Pixel Purity Index of this by computingk'S x NS dot-products simultaneously,
The Pixel Purity Index (PPI) is an algorithm employed invhereK S andN S represent the number of skewers and pixels
remote sensing for analyzing hyperspectral images. Partithat can be processed in parallel.
larly for low-resolution imagery, a single pixel usually covers ]
several different materials, and its observed spectrum is ffoMatched Filter
a good approximation) a linear combination of a fewre The matched filter is a well-known technique for detecting a
spectral shapes. The PPI algorithm tries to identify these pwignal in the presence of known forms of “clutter.” By filtering
spectra by assigning a pixel purity index to each pixel in thgith respect to pre-determined background signatures, weak
image; the spectra for those pixels with a high index value asggnals may be recovered that might otherwise have been lost
candidates for basis elements in the image decomposition.in the background. Matched filters are used in many appli-
The algorithm proceeds by generating a large number cdtion domains, of particular interest to us are multi-spectral
random D-dimensional vectors, called skewers, through thenage processing, RF signal detection and pulse compression.
hyperspectral image. For each skewer, every data pointlisthe case of multi- or hyper-spectral image processing,
projected onto the skewer, and the position along the skewke matched filter is well-suited to automatic detection of
is noted. The data points that correspond to extrema in thignals within image cubes containing tens to hundreds of
direction of a skewer are identified and placed on a list. Apectral channels. The purpose of a matched filter is to match
more skewers are generated, this list grows. The numberasf image pixel's spectral signature against a pre-determined
times a given pixel is placed on this list is also tallied. Th&background" signature. When analyzing multi- or hyper-
pixels with the highest tallies are considered the most pusgectral imagery with complex background clutter for small or
and the pixel's count provides its pixel purity index. weak targets, filtering a target image through a matched filter



DMA

suppresses background spectra and thus increases response t

non-background features. A bank of matched filters may be l L
created to filter out a variety of “clutter” effects [2]. @ @ ﬁiﬂ
The matched filter is implemented by a convolution func- e = ... I
tion. A convolution is an integral that expresses the amount of —— 1 77 B o
overlap of one function as it is shifted over another function. It EeoR ’ il J 1
therefore "blends" one function with another. For example, in 3 @ _—
synthesis imaging, the measured dirty map is a convolution of U Bl Exrevsion Faen
the "true" clean map with the dirty beam (the Fourier transform " B o ¥
of the sampling distribution). I I I I I
GMAC/ GMAC/ GMAC/ GMAC/ GIB
FIFO FIFO FIFO FIFO
I[1l. STRETCHS5
Stretch Inc. was founded in March 2002. Stretch pro- Fig. 1. Stretch S5620 Processor architecture
vides software-configurable processors for compute-intensive
Software View Hardware View

applications and standard C/C++ programming tools. The || cc++
systems can address applications in the telecom, networking,
video, medical markets and support evolving standards such
as H.264 video encoding and 802.16-2004 wireless standards. KA
Stretch offers development boards for the video, wireless, and
biometric application domains.

—————

;) Stretch IDE and

4
'

Memory

32-bit RF

SW CONTROL

A. Architecture

T e

Stretch uses a single specialized, high performance RISC TS

processor core, the 300-MHz Xtensa core with 16- and 24- Fig. 2. Stretch Software Development Environment

bit instructions as shown in Figure 1. The core supports
memory managed unit (MMU) with a translation look-asid
buffer(TLB) which translates virtual pages to physical pages. The Stretch processors target the embedded market and are

g‘. Application Domain

The external and embedded memory specifications are:

o 64-bit DDR400 SDRAM
e 256-KB SRAM

« 32-KB Data RAM

e 32-KB Data Cache

o 32-KB Instruction Cache

The I/O support on the Stretch S5 chip is as follows:

« 1 32-bit, 66MHz PCI port

« 4 programmable parallel ports

« 2 Time Division Multiplexed (TDM) ports

« 1 Generic Interface Bus (GIB)

« 2 programmable serial ports

o 2 UART ports with IrDA

o 1 General Purpose I/0 (GPIO) and Interrupts
« 1 standard test port - JTAG (IEEE 1149.1)

B. Development Environment

The Integrated Development Environment (IDE) tools suite o

suited for compute-intensive algorithms. Embedded software
engineers can create optimized processors using an off-the-
shelf chip and their C/C++ application. C-functions can be
parallelized into new instructions that execute in a single cycle.
The specialized compiler technology automatically converts
selected C functions into programmable logic. Most impor-
tantly, because the uniqueness of the instruction set comes
directly from the application code, the processor can accelerate
compute-intensive application in many markets including, but
not limited to:

« High-end consumer audio-video (video conferencing, me-
dia gateways, digital TV, broadcast equipment)

« Office imaging (scanners, printers)

o Wireless communications (base stations, satellite re-
ceivers)

« Medical imaging (CAT scans, ultrasound)

« Industrial imaging (e.g., robot/machine vision)

« Video

o Wireless

Biometrics

(shown in Figure 2) is a graphical interface consisting of

a compiler, debugger, assembler, profiler, linker and editht: Performance

Stretch’s C/C++ compiler programs the processor and au-See Sectior?? and Sectior?? for performance results. The
tomatically configures the Instruction-Set Extension Fabrievelopment boards have a pin-out for power so it can be
(ISEF) with application-specific instructions. A debugger anaheasured per application.

profiler in the IDE tools suite provide verification and analysis The bottle-necks to algorithm performance, hardware ca-

capability. 32-bit fixed point data types are supported.

pacity or utilization have yet to be determined. However, one



IRAM IRAM IRAM IRAM IRAM IRAM
limitation is the fixed bandwidth to the ISEF - there are 2
128-hit input ports and 1 128-bit output port.

IV. MATHSTAR FPOA

MathStar designs and develops ultra-high performance
semiconductors for Digital Signal Processing (DSP) and fil-
tering applications. MathStar was founded by communications
industry veteran Douglas M. Pihl and is a development stage
company headquartered in the Minneapolis, MN metropolitan
area. In March 2005, MathStar was selected by Honeywell to
provide Field Programmable Object Array (FPOA) technology
that will be incorporated into Honeywell semiconductors for
satellites in military space systems.

TX
RX

RX
TX

A. Architecture

The MathStar FPOA chip shown in Figure 3 has 400 Silicon = o B AR
Objects - 256 ALUs, 64 Multiply Accumulates (MACs), and
80 Register Files (RFs). It has a bi-directional 800-MHz DDR
16-bit LVDS port and features differential clock inputs as well IB)  Register Files
as sync inputs. The LVDS port can also be configured as a
bi-directional 32-bit 320-MHz HSTL port. The device also has
four sets of 44-pin 100 MHz LVCMOS General Purpose I/Os IRAM Internal SRAM Banks
(GPIO), operating either synchronously or asynchronously.
Finally, it has twelve 500-MHz 768x76-bit internal memory
blocks and two 250-MHz 36-bit DDR (72-bits per cycle) General Purpose 1/0 Banks
RLDRAM or DDRII SRAM controllers for external memory
accesses. There are more FPOA devices in development to

Arithmetic Logic Units

Multiply/Accumulators

External Memory Interfaces

TX  High Speed Transmit Ports

serve a broader range of applications. RX High Speed Receive Ports
The FPOA can communicate information with external _ _
processors or hosts through a bridge to LVDS and HSTL ports. Fig. 3. FPOA architecture

Local bus interface modules to the PowerQUICC processor.. . . . . ' . : .
. . maintained in this configuration. Floating point and double
and PLX-to-PCI bridges are implemented. recision tvpes can be emulated
The FPOA Silicon Blocks can have a semi-autonomolis P '
nature. For ex_ampl_e, each_ ALU Silicon Object has a Progra@ application Domain
memory of eight instructions that contain both operation ) ) _ )
and communication directions. The control path is bit-wise The FPOA is suited for higher performance DSP applica-
granular and guides program execution while data is movB@ns like high-sample-rate complex Fast-Fourier Transforms
and operated upon via the 16-bit data path. (Multiple objec(tEFTS_) and Finite Impu_Ise Respp_nse (FIR) filters. MathStar is
can be combined to create wider data paths.) Thus, instructié@&geting the commercial and military/aerospace DSP market.
are the mechanisms that tie the independent control and dBg€ir prototype boards can cascade into larger systems through
paths together within the array. the LVDS and HSTL hlgh speed interfaces. No large-scale
The instructions are loaded at power up and can be rec&¥Stéms have been built to-date.
figured by the host system. Intelligent scheduling and routi
tools deterministically allocate instructions to each obje
before run-time. This works in conjunction with the MathStar's The FPOA devices have 400 1-GHz silicon objects, re-
Party Line communication scheme which permits high spesdlting in a device with 400 gigaoperations/second of perfor-

. Performance

sharing of data throughout the device (and externally). mance. The MathStar FPOA claims to deliver 2-4 times the
) performance of an FPGA while retaining the flexibility of a
B. Development Environment programmable device.

The MathStar design flow is given in Figure 4. Algorithms Power consumption is highly application dependent. The
must be converted to the Visual Elite/SystemC programmir80A13D40-01 FPOA with 400 silicon objects running at 1-
language for simulation and test. The environment suppo@diz with 100% utilization can consume approximately 10 to
clock accurate simulation and verification (with the Riveri80 Watts of power. However, power consumption depends on
simulator). many factors such as the run-time activity, operating frequency,

32- and 64-bit integer data types can be handled by casitage supply, temperature conditions, process variations, etc.
cading processor modules together. The 1-GHz speed is mbese numbers should be considered estimates.



If various in-process (i.e., during machining) measurements
Svmj?:pgm,s;&:c‘ are made (e.g., acoustic, vibration, video), it seems reasonable

that a correlation could be developed between these measured
guantities and the material properties of interest. This would

then allow one to use the machining process itself as a

L - Ej P diagnostic for material property variability. Recent work at

Varable Lovelof Comeciod LANL has attempted to do just that. In particular, high speed
B Ej bt o e video (4000 frames/sec) was recorded for hundreds of cuts

v e (vielding about 250 GB of video) involving workpieces with

[ ontiov row g | several different hardnesses (as measured on the Rockwell C
scale). Two successive frames of a clip of this video are shown

[ simuiate Deieo Design | in Figure 5. After preliminary analysis of the video streams

by humans, it seemed that the velocity of the cut chip was

closely correlated with workpiece hardness. However, there

: < N are many challenges in extracting chip velocity from the video.

Floorfanmine For instance, due to reflection from the chip, lighting can vary
significantly. Additionally, “clutter” (i.e., metal dust) can build

v up on the tool. Finally, because the chip formed is typically

[ towre - MattarConipantion Mip continuous, it can “flop” around and occasionally block or
Load Image to Device at least blur the field of view. To address these challenges a
v sequence of image processing algorithms were applied. These

in Gt Verfcaton || SR anStar BuoSirapt algorithms include high pass filtering, interframe differencing,

and registration. While these algorithms are relatively easy to
implement, they can take quite some time to run on 250 GB of
data and on a standard PC. Thus, in order to have a real-time
chip velocity measurement tool, it is desirable to implement
these algorithms on special purpose, high speed processors,
One bottle-neck to algorithm performance is the 16-bivhich is the goal of this project.

processor array. Larger data sizes require cascaded processor:
and, thus, the 1-GHz speed cannot be maintained.

Fig. 4. MathStar FPOA Design Flow

V. 8 WEEK PLAN

o Week 1-2 Become familiar with the tools and develop-
ment environment for the Stretch S5000 processor and/or
the MathStar FPOA chip.

« Week 3 Try a simple FIR filter example, profile code and
write an optimization. Record the run-time improvement.

o Week 4 Measure the power for the FIR filter example
and record time and effort it took to use the development
environment.

o Week 5-7 Try an image processing algorithm and repeat
steps from Week 3-4.

o Week 8 Write up report with results and make a presen-
tation.

Fig. 5. Video clips of a cut

VI. STRUCTURAL DYNAMICS APPLICATION

] o ) ) VII. EQUIPMENT REQUIREMENT
The structural dynamics motivation for this project comes

from the area of machining of metal parts. For certain appl-_tWo(;kstaltlon runtnlng _W'ndowf i(PIan(iINStretch agd/cr)]r Mattr;]-
cations, typically involving high-precision components, it :}iar evelopment environment tools. We currently have the

desirable to detect the variability in material properties of t ardwar:—:- and softwgre to;)Is fort:]h|shpr31ect. Tthedto;)ls mclu?;a
workpiece material. Such properties of interest may includ@WEr Planners or pin-outs on the hardware to determine the

grain size or hardness. However, standard testing procedLﬁl&Ner/ ops calculation.
for these properties are destructive in nature and can there- REFERENCES
fore not be applied to a finished component. An alternative _ _ . .
. . . %]a Joseph Arrowood. Comparison of filter banks for signal detection. In
approach relies on the observation that machining can Be | zyr Number 99-4551 0s Alamos, NM, March 2000.

viewed as a high strain rate, high temperature material tegt. Jeff Bloch. rcc.lanl.goviimaging/index.php. 1999.
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